20 research outputs found

    Identifying and Consolidating Knowledge Engineering Requirements

    Full text link
    Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used because high-quality knowledge is assumed to be crucial for reliable intelligent agents. However, the landscape of knowledge engineering has changed, presenting four challenges: unaddressed stakeholder requirements, mismatched technologies, adoption barriers for new organizations, and misalignment with software engineering practices. In this paper, we propose to address these challenges by developing a reference architecture using a mainstream software methodology. By studying the requirements of different stakeholders and eras, we identify 23 essential quality attributes for evaluating reference architectures. We assess three candidate architectures from recent literature based on these attributes. Finally, we discuss the next steps towards a comprehensive reference architecture, including prioritizing quality attributes, integrating components with complementary strengths, and supporting missing socio-technical requirements. As this endeavor requires a collaborative effort, we invite all knowledge engineering researchers and practitioners to join us

    Self-Assessed Time Span of Focused Attention During a Breath Focus Test Task as a Measure of Mindfulness: A Preliminary Evaluation

    Get PDF
    Introduction: An easy task-based measure of mindfulness that can be self-administered in a daily life setting is still not available. We aimed to perform a preliminary evaluation of the Breath Focus Test Task to measure mindfulness. Methods: A quantitative observational study was performed among medical students. Each participant was instructed to focus attention to the participant’s own breath and count each breath with awareness until the participant noticed mind wandering. The last breath count attended before losing awareness of the task (breath count with awareness) was recalled and self-reported by each participant. Three such breath focus sessions were planned for each participant. The mean ‘breath count with awareness’ of each participant was then converted to time span of focused attention using the rate of breathing. This time span of focused attention was reported as the proposed measure of mindfulness. Each participant also completed the 'Mindful Attention Awareness Scale questionnaire'. Results: Out of 101 participants, 76 completed at least one breath focus session satisfactorily. The median time span of focused attention was three minutes (first quartile = 1.9 minutes and third quartile = 4.5 minutes). The Mindful Attention Awareness Score was 3.9 (SD = 0.6). The results did not show a significant correlation between the time span of focused attention and the Mindful Attention Awareness Score (r s = 0.04, p = 0.74). Conclusion: This study shows the feasibility of the proposed test task. However, the measure obtained from the current form did not correlate with the Mindful Attention Awareness Score

    Two Timin': Repairing Smart Contracts With A Two-Layered Approach

    Full text link
    Due to the modern relevance of blockchain technology, smart contracts present both substantial risks and benefits. Vulnerabilities within them can trigger a cascade of consequences, resulting in significant losses. Many current papers primarily focus on classifying smart contracts for malicious intent, often relying on limited contract characteristics, such as bytecode or opcode. This paper proposes a novel, two-layered framework: 1) classifying and 2) directly repairing malicious contracts. Slither's vulnerability report is combined with source code and passed through a pre-trained RandomForestClassifier (RFC) and Large Language Models (LLMs), classifying and repairing each suggested vulnerability. Experiments demonstrate the effectiveness of fine-tuned and prompt-engineered LLMs. The smart contract repair models, built from pre-trained GPT-3.5-Turbo and fine-tuned Llama-2-7B models, reduced the overall vulnerability count by 97.5% and 96.7% respectively. A manual inspection of repaired contracts shows that all retain functionality, indicating that the proposed method is appropriate for automatic batch classification and repair of vulnerabilities in smart contracts.Comment: Submitted to the 2023 ICI Conferenc

    Enhancing Smart City Services with AI: A Field Experiment in the Context of Industry 5.0

    Get PDF
    The practical effects of incorporating artificial intelligence (AI) into Industry 5.0 smart city services are made evident by this empirical research. The use of AI-powered smart traffic management yields a noteworthy 32.94% rise in traffic volume, signifying a noteworthy progression towards improved urban mobility. AI waste management optimization results in a 5.71% increase in collection efficiency, highlighting the importance of operational effectiveness and resource conservation. The control of energy use shows an 8.57% decrease, confirming AI's importance in sustainable energy practices. AI-enhanced public safety offers dependable event prediction, indicating safer cityscapes. These results highlight AI's revolutionary potential and establish smart cities as safe, secure, and sustainable urban environments

    Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals

    Get PDF
    Contribution of finite element method (FEM) as a modelling and simulation technique to represent complex tribological processes has improved our understanding about various biomaterials. This paper presents a review of the advances in the domain of finite element (FE) modelling for simulating tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals used in bio tribology and machining. Although the study is largely focused on material removal cases in metals, the modelling strategies can be applied to a wide range of other materials. This study discusses the development of friction models, meshing and remeshing strategies, and constitutive material models. The mesh-based and meshless formulations employed for bio tribological simulations with their advantages and limitations are also discussed. The output solution variables including scratch forces, local temperature, residual stresses are analyzed as a function of input variables

    Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunities.

    Get PDF
    Thermal spray coatings have the advantage of providing thick and functional coatings from a range of engineering materials. The associated coating processes provide good control of coating thickness, morphology, microstructure, pore size and porosity, and residual strain in the coatings through selection of suitable process parameters for any coating material of interest. This review consolidates scarce literature on thermally sprayed components which are critical and vital constituents (e.g. catalysts (anode/cathode), solid electrolyte, and transport layer, including corrosion-prone parts such as bipolar plates) of the water splitting electrolysis process for hydrogen production. The research shows that there is a gap in thermally sprayed feedstock material selection strategy as well as in addressing modelling needs that can be crucial to advancing applications exploiting their catalytic and corrosion-resistant properties to split water for hydrogen production. Due to readily scalable production enabled by thermal spray techniques, this manufacturing route bears potential to dominate the sustainable electrolyser technologies in the future. While the well-established thermal spray coating variants may have certain limitations in the manner they are currently practiced, deployment of both conventional and novel thermal spray approaches (suspension, solution, hybrid) is clearly promising for targeted development of electrolysers

    Thermal Spray Coatings for Electromagnetic Wave Absorption and Interference Shielding: A Review and Future Challenges

    Get PDF
    This review paper aims to consolidate scattered literature on thermally sprayed coatings with non-ionising electromagnetic (EM) wave absorption and shielding over specific wavelengths potentially useful in diverse applications (e.g., microwave to millimeter wave, solar selective, photocatalytic, interference shielding, thermal barrier-heat/emissivity). Materials EM properties such as electric permittivity, magnetic permeability, electrical conductivity, and dielectric loss are critical due to which a material can respond to absorbed, reflected, transmitted, or may excite surface electromagnetic waves at frequencies typical of electromagnetic radiations. Thermal spraying is a standard industrial practice used for depositing coatings where the sprayed layer is formed by successive impact of fully or partially molten droplets/particles of a material (used in the form of powder or wire) exposed to high or moderate temperatures and velocities. However, as an emerging novel application of an existing thermal spray techniques, some special considerations are warranted for targeted development involving relevant characterisation. Key potential research areas of development relating to material selection and coating fabrication strategies and their impact on existing practices in the field are identified. The study shows a research gap in the feedstock materials design and doping (including hollow and yolk-shelled structure types) and their complex selection covered by thermally sprayed coatings that can be critical to advancing applications exploiting their electromagnetic properties

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
    corecore